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Abstract: In this article, the performance of a reactive Simulated Moving Bed (SMB) and its modi-

fication, the more flexible Varicol process, is improved for the synthesis of methyl acetate (MeOAc)

ester by multi-objective optimization using Non-dominated Sorting Genetic Algorithm (NSGA). The

Varicol process is based on a non-synchronous shift of the inlet and outlet ports instead of the

synchronous one used in the traditional SMB technology. The optimization problems considered are

both two- and three-objective function problems. In one case, optimization was aimed at simultaneous

maximization of the purity of MeOAc and minimization of adsorbent (and catalyst) requirement for

the reactive SMB; while in the other case, maximization of purity and yield of MeOAc together with

minimization of eluent (methanol) consumption for both reactive SMB and Varicol systems were

considered. When the optimal solutions were compared, it was found that reactive Varicol systems

could produce a higher purity product for a fixed yield, and consume slightly less eluent in the high

purity region than more rigid SMB systems.
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NOTATION
dcol Diameter of column

L Length of column

Ncol Total number of columns

Q Volumetric flow rate

ts Switching time

Y Yield

a Ratio of feed flow rate to flow rate in section

P

b Ratio of raffinate flow rate to flow rate in

section P

g Ratio of eluent flow rate to flow rate in

section P

INTRODUCTION
Simulated Moving Bed (SMB)1 systems are used for

separations that are either impossible or difficult using

traditional separation techniques. By virtue of its

superior separating power, the SMB system has

become one of the most popular technologies, finding

application in the petrochemical and sugar industries;

and of late, there has been a dramatic increase in

interest in SMB in the pharmaceutical industry for

enantio-separations.2 SMB systems can also be inte-

grated to include reactions3,4 which can provide

economic benefit for equilibrium-limited reversible

reactions, such as many hydrogenation, isomerization,

and esterification reactions. In-situ separation of the

products allows the reversible reaction to proceed to

completion beyond the thermodynamic equilibrium

and at the same time products of high purity to the

obtained. The recently developed Varicol process5 is

based on the non-synchronous shift of the inlet and

outlet ports during a global switching period instead of

the synchronous one used in the SMB technology.

The successful implementation of reactive SMB and

Varicol processes on an industrial scale will necessitate

the optimal design parameters and operating condi-

tions to be determined. Several studies6–8 have

reported on the design and optimization of reactive

SMB, but they only involve a single objective

optimization in terms of productivity, which is usually

not sufficient for the real-life complex design, since

operating variables often influence the performance of

reactive SMB in conflicting ways. Hence, multi-

objective optimization9 is essential for the design of

reactive SMB and Varicol systems.

The principle of multi-criterion optimization with

conflicting objectives is different from that of single

objective optimization. Instead of trying to find the

best design (unique global) solution, the goal of multi-

objective optimization is to obtain a set of equally good

non-dominated solutions, which are known as Pareto
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optimal solutions. In a set of Pareto solutions, no

solution could be considered better than other solu-

tions with respect to all objective functions.

In this work, multi-objective optimization has been

performed for the synthesis of methyl acelate

(MeOAc) in reactive SMB and Varicol systems using

Non-dominated Sorting Genetic Algorithm

(NSGA).10 To the best of our knowledge, this is the

first attempt to extend the concept of the Varicol

(variable column) process to reactive systems, and

compare the optimal solutions with those of reactive

SMB. The objectives of this paper are to deepen the

understanding of reactive SMB and Varicol processes

and provide a new approach toward their optimal

design.

SIMULATED MOVING BED (SMB) SYSTEM AND
VARICOL PROCESS
In an SMB system, a fixed bed is used, and successive

switching of the feed and product positions at timed

intervals simulates the movement of the solid.3,4 The

solid phase velocity can be defined as the ratio of the

column length and the switching time.11 One obvious

shortcoming of the SMB operating mode is that the

velocity of the solid is constant in all sections as

constant values of both switching time and length are

used. Recently, a novel process, Varicol,5 which is

based on non-simultaneous and unequal shifts of the

inlet/outlet ports, has been developed. The concept

and the principle of operation for a four-subinterval

Varicol process together with the equivalent SMB

process are illustrated schematically in Fig 1 for one

switching period. Figure 1(a) shows a schematic

diagram of a six-column SMB and the principle of its

operation. It consists of columns of uniform cross-

section, each of length L and packed with an

adsorbent. The columns are connected in series in a

circular array. Two incoming fluid streams (feed and

eluent) and two outgoing fluid streams (extract and

raffinate) divide the system into four sections, with

two, one, one and two columns in each section

respectively, corresponding to the column configura-

tion 2/1/1/2. Simulation of countercurrent movement

of the solid and the fluid is achieved by advancing the

inlet and withdrawal ports, column by column, in the

same direction as the fluid flow, at a predetermined

switching time, ts. Switching time and column config-

uration (the number of columns in each section) in

SMB processes are usually decided a priori and remain

constant during the entire operation.

In contrast to SMB, the Varicol process is based on a

non-simultaneous and unequal shift of the inlet/outlet

ports. The concept and the principle of operation of

the Varicol process together with the equivalent SMB

process are illustrated schematically in Fig 1(b) for one

switching period. The switching time, ts, which is

related directly to the solid flow rate in SMB, is also a

key parameter in the Varicol process, although the

relationship is not straightforward. In Varicol opera-

tion, a non-synchronous shift of the inlet and outlet

ports is usually employed within a switching period,

which is again kept constant in time. This is shown

as an illustrative example in Fig 1(b) for a four-

Figure 1. (a) Schematic diagram of a six-column SMB system. (b) Principle
of operation of SMB and four-subinterval Varicol system (port switching
schedule).
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subinterval Varicol process. Within one (global)

switching period ts, the column configuration changes

from 2/1/1/2 (0–ts/4) to 2/1/2/1 (ts/4–ts/2) by shifting

the extract port forward by one column, then to 1/1/2/

2 (ts/2–ts3/4) by shifting the feed port one column

forward, then to 1/2/1/2 (ts3/4–ts) by shifting the eluent
port one column forward, and finally return to the

original configuration of 2/1/1/2 by shifting the

raffinate port one column forward. As a result, in a

four-subinterval Varicol process, there are four differ-

ent column configurations for the four subintervals

due to local switching during one global switching

period. The number of columns in each zone varies

with time within a global switching period, but the

number of columns in each zone returns to the starting

value at the end of the global switching period. In

terms of average number of columns per zone this

corresponds to the configuration 1.5/1.25/1.5/1.75.

Note that the average number for any particular zone

is obtained as follows: for example, for zone P, 1.5 is

obtained from (2þ2þ1þ1)/4, where the numbers in

parenthesis are the number of columns in zone P in the

four subintervals.

Therefore, locations of input/output ports in Varicol

processes are quite different from SMB processes.

Note that in principle it is possible that a port may shift

more than once during one global switching period,

either forward or even in a backward direction. As a

result, Varicol processes can have several column

configurations, which endow more flexibility com-

pared with SMB processes. SMB processes can be

regarded as a special case of the more flexible Varicol

processes. It is notable that the Varicol process does

not add any additional fixed cost.

MATHEMATICAL MODEL
The direct synthesis of methyl acetate ester (MeOAc)

from methanol (MeOH) and acetic acid (HOAc)

catalysed by Amberlyst 15 ion exchange resin has been

considered as an example. The mathematical model

reported by Zhang et al12 was adopted to describe the

dynamic behaviour of reactive SMB and Varicol

systems except that the reaction rate is given by:

R
ðNÞ
j ¼ kf q

ðNÞ
HOAc;j �

q
ðNÞ
MeOAc;j � q

ðNÞ
H2O;j

Ke

" #
ð1Þ

The kinetic, adsorption constants and diffusion

coefficients of each component involved in the process

were determined semi-empirically by fitting the

experimentally measured breakthrough curves with

the model prediction obtained by solving the mass

balance equation given by:
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where qi ¼ KiCi ð3Þ

The initial and boundary conditions are:

Ci½t ¼ 0� ¼ C0
i ð4Þ

Ci½0 < t < tp�Z¼0 ¼ Cf ;i ð5Þ

Ci½t > tp�Z¼0 ¼ 0 ð6Þ

@CiðtÞ
@z

� �
Z¼0

¼ 0 ð7Þ

At 318K, the values obtained are KHOAc=0.425,

KMeOAc=0.376, KH2O=2.938; DHOAc=3.884m2s�1,

DMeOAc=3.884m2s�1, DH2O=11.168m2s�1; kf=
1.062min�1 and Ke=334.023mol dm�3. Detailed

procedures are described elsewhere.13 The partial

differential equations were solved using the Method

of Lines and were first discretized in space using the

Finite Difference Method (FDM) to convert them

into a set of several-coupled Ordinary Differential

Equation-Initial Value Problems (ODE-IVPs) and the

resultant stiff ODEs of the initial value kind were

solved using the subroutine, DIVPAG, in the IMSL

library.

MULTI-OBJECTIVE OPTIMIZATION
In single objective function optimization, one attempts

to find the best design, which is usually the global

minimum (or maximum). However, most real world

problems involve the simultaneous optimization of

multiple objective functions (a vector). Such problems

are conceptually different from single objective func-

tion problems. In multiple objective function optimi-

zation, there may not exist a solution that is the best

(global optimum) with respect to all objectives.

Instead, there could exist an entire set of optimal

solutions that are equally good. These solutions are

known as Pareto-optimal (or non-dominated) solu-

tions. A Pareto set, for example, for a two objective

function problem is described by a set of points such

that when one moves from one point to any other, one

objective function improves, while the other worsens.

Thus, one cannot say that any one of these points is

superior (or dominant) to any other. Since none of the

non-dominated solutions in the Pareto set is superior

to any other, any one of them is an acceptable solution.

The choice of one solution over the other requires

additional knowledge of the problem, and often this

knowledge is intuitive and non-quantifiable. In the

present study, work on the multiobjective optimization

for a chemical process as complex as the reactive SMB

and Varicol processes is reported. For proper design of

a reactive SMB, and more importantly, understanding

the principle of operation of a reactive SMB, a multi-

objective optimization study is much more mean-

ingful.

Case 1. Maximization of purity of MeOAc (PMeOAc)
and minimization of volume of solid (Vsolid)
The performance of a reactive SMB was first
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optimized at the design stage to determine the optimal

length of column to minimize the total amount of

adsorbent (Vsolid) required while at the same time

producing as high purity product as possible. It is

described mathematically as:

Maximize J1 ¼ PMeOAcðts;L; gÞ ð8Þ

Minimize J2 ¼ Vsolidðts;L; gÞ ð9Þ

Subject to

PMeOAc � 80%;YMeOAc � 80% ð10Þ

1ðminÞ � ts � 40 ðminÞ; 10cm � L � 100cm;

1 � g � 2:5 ð11Þ

for fixed values of Qp ¼ 2 cm3 min�1; a ¼ 0:1;
b¼0:6; dcol ¼ 0:94 cm;Ncol ¼ 4;Cfeed

HOAc ¼ 2moldm�3.

The modified objective functions incorporating the

inequality constraints as penalty functions are written

as:

Minimize I1 ¼ 1=ð1þ J1Þ þ wðf1 þ f2Þ

Minimize I2 ¼ J2 þ wðf1 þ f2Þ

where:

f1 ¼ jPMeOAc � 0:80j � ðPMeOAc � 0:80Þ

f2 ¼ jYMeOAc � 0:80j � ðYMeOAc � 0:80Þ

The penalty value (w) was given as 103 for all the

optimization problems discussed in this article to

ensure the fulfilling of the constraints. A non-

dominated sorting genetic algorithm (NSGA)9,10 was

used with the model described above to optimize the

reactive SMB and Varicol processes. NSGA generates

a set of solutions that are non-dominating over each

other, and constitute multi-objective Pareto optimal

solutions representing optimal operating conditions

for the SMB and Varicol processes. Indeed, NSGA has

been applied recently to optimize several industrially

important processes in chemical engineering, includ-

ing an industrial nylon-6 semi-batch reactor,14 a

wiped-film polyester reactor,15 PMMA film reactor,16

a steam reformer,17 hydrogen plant,18 beer dialysis,19

cyclone separators,20 Venturi scrubber,21 MTBE

synthesis in SMBR,22 and a styrene reactor.23

RESULTS AND DISCUSSION
The Pareto optimal solution and corresponding

decision variables are shown in Fig 2 for case 1. Figure

2(a) shows that the purity of MeOAc increases at the

cost of increasing adsorbent requirement. From Fig

2(b), it can be observed that the eluent flow rate tends

to reach the upper boundary, especially in the high

purity region. This is due to the fact that high

desorbent flow rate in section R leads to complete

regeneration of adsorbent, which in turn improves

product purity. Figure 2(c and d) also shows that an

Figure 2. Pareto optimal solutions and
corresponding values of decision variables
for case 1 optimization problem. (a) Effect
of volume of adsorbent; (b) effect of eluent
flow rate; (c) effect of switching time; (d)
effect of column length.
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optimal switching time corresponding to a specific

length of column exists.

Effect of feed flow rate, a
The effect of feed flow rate on the Pareto was

investigated by comparing the optimal solutions for a
at 0.1, 0.4 and 0.6. It is shown in Fig 3(a) that more

adsorbent is needed to achieve the same purity

requirement as a increases. When Qp is kept constant,

increase of a leads to the decrease of Qs, which

deteriorates the performance of section S, since it is

responsible for desorbing MeOAc. Hence, ts has to be

increased to improve the performance of section S due

to the constraint on yield. However, the increase of ts is
not desirable for section P, since water will break

through and decrease PMeOAc in the raffinate stream.

Hence, for same purity requirement, the length of

column has to be increased to retain water from

breaking through in section P.

Effect of raffinate flow rate, b
Figure 3(b) shows the shift of Pareto for different

values of b. It can be seen that the adsorbent

requirement slightly increases as b increases to obtain

the same purity of product. When b increases, both Qq

and Qr decrease while QE can be assumed to be

constant, as it tends to reach the upper boundary. The

decrease ofQq is favourable, since the role of section Q

is to clean the solvent for recycling. However, the

decrease in Qr will deteriorate the complete regenera-

tion of the resin. So ts has to be increased to improve

the performance of section R, otherwise the remaining

water in the adsorbent will later pollute the product

ester in the raffinate stream. Again, as discussed above,

the length of column has to be increased to prevent

water breaking through in section P.

Effect of flow rate in section P, Qp
As shown by Fig 3(c), the adsorbent requirement

increases for the same product purity as QP increases.

This is due to the fact that the length of each column

has to be increased to provide sufficient residence time

to allow the reaction to proceed, since unconverted

acetic acid will primarily leave with ester product at the

raffinate port due to their similar adsorption affinity

toward the solid adsorbent, thereby contaminating the

purity of the ester in the raffinate stream if conversion

is kept low.

Effect of total number of columns, Ncol
Figure 3(d) shows the comparison of Pareto optimal

solutions for different total number of columns. It is

found that the adsorbent requirement for a five-

column unit is less than that of a four-column unit

for the same purity requirement. This is due to the fact

that the minimum length of column required to

achieve the same product purity becomes smaller,

since each section of the SMB plays a specific role in

Figure 3. Effect of various parameters
on the Pareto optimal solutions; (a)
effect of feed flow rate, a, (b) effect of
raffinate flow rate, b, (c) effect of
column flow rate, QP, and (d) effect of
number of columns, Ncol.
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achieving the separation of reaction products. Sections

P and S are primarily responsible for retention of the

strongly adsorbed component (water). The functions

of sections Q and R are to clean the solvent and

regenerate the columns by desorbing the strongly

adsorbed component. For the objective function of

maximization of PMeOAc, the roles of section Q and

section R are less important. Reactive sections

primarily control the minimum length of column and

therefore, by introducing one more column into the

reactive section (section P), the minimum length of

each column could be reduced to achieve the same

product purity. The optimal (minimum) lengths of

each column obtained were 17cm and 10cm respec-

tively for a four-column and a five-column SMB unit.

Case 2. Maximization of purity and yield of MeOAc
and minimization of eluent consumption
In this section, the performance of both reactive SMB

and Varicol processes were optimized for an existing

unit. The length of column was fixed as 10cm based

on the results of five-column optimal solutions in case

1. The problem is described mathematically as

follows:

Maximize I1 ¼ PMeOAcðts; b; gÞ ð12Þ

Maximize I2 ¼ YMeOAcðts; b; gÞ ð13Þ

Minimize I3 ¼ g ðts; b; gÞ ð14Þ

Subject to

PMeOAc � 80%; YMeOAc � 80% ð15Þ

1ðminÞ � ts � 20ðminÞ; 1 � g � 4; 0:1 � b � 0:9

ð16Þ

Qp ¼ 2 cm3 min�1; a ¼ 0:1; dcol ¼ 0:94 cm;

Ncol ¼ 5; L ¼ 10 cm;Cfeed
HOAc ¼ 2 mol dm�3 ð17Þ

For the convenience of analysis, the Paretos were

plotted in two dimensions, that is, YMeOAc or g against
PMeOAc. Figure 4(a) shows that PMeOAc decreases as

YMeOAc increases for both reactive SMB and Varicol

systems and the performance of Varicol is better than

that of SMB in terms of higher yield for the same

purity requirement. From Fig 4(b), it can be observed

that the increase of PMeOAC is at the cost of eluent

consumption (g) for both reactive SMB and Varicol

systems and the g is lower for Varicol than that for

SMB for the same purity requirement, especially in the

high purity region. The optimal column distribution

for Varicol was found to be 1-1-1-2,2-1-1-1,2-1-1-1,

2-1-1-1 for the four-subintervals. The optimal switch-

ing time, ts, obtained was 3.5min and 2.9min

respectively for the SMB and the Varicol system.

The better performance of the Varicol system results in

its flexibility in column distribution, leading to better

utilization of adsorbent.

CONCLUSIONS
The multi-objective optimization of reactive SMB and

Varicol systems were performed using NSGA for the

synthesis of MeOAc. The effects of flow rates and total

number of columns on the performance of reactive

SMB were investigated. It was found that the

performance of reactive the Varicol system could be

better than that of the reactive SMB system due to

increased flexibility.
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